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Abstract: Canalyzing Boolean functions have shown their popularity in various biological
networks and established themselves to be biologically meaningful at the system level, marking
their importance in the analysis of stability and robustness of such complex systems. Based on
a matrix representation of Boolean networks due to the recently developed tool called semi-
tensor product, we categorize canalyzing functions in terms of their capabilities of affecting
the number of attractors in the Boolean network, which is one key index for the stability and
robustness of Boolean networks. We show that there exist only three categories of attractor-
effective canalyzing functions for any network size larger than 1, while the number of all the
interested canalyzing functions is proportional to the square of the network size. We also give
the explicit expression of the mean number of attractors with any length for Boolean networks
with a single canalyzing function. Compared with Boolean networks without any canalyzing
functions, we are able to show quantitatively how canalyzing functions can affect the mean
number and length of attractors in Boolean networks for the first time.
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1. INTRODUCTION

Boolean networks are simple yet meaningful models for
biological networks. One can investigate universal proper-
ties of biological systems such as robustness, evolutionary
preference, etc. based on such models(Zhao and Krishnan,
2016; Akman et al., 2012; Handorf and Klipp, 2012; Zhao
and Krishnan, 2014). Within this Boolean network mod-
eling framework, canalyzing functions have shown their
popularity in various Boolean network models of biological
networks. A Boolean function is said to be canalyzing on
one of its variables if a specific logical value of this variable
(either TRUE or FALSE) can determine the output of the
whole Boolean function (either TRUE or FALSE) what-
ever values other variables choose. Canalyzing functions
are believed to be biologically significant at the systems
level, and are closely related to the system and control
concepts in the general sense (Kauffman et al., 2004, 2003;
Paul et al., 2006; Murrugarra and Laubenbacher, 2011).
For example, genetic networks with canalyzing functions
are shown to be always stable (Kauffman et al., 2004,
2003). Boolean networks with a generalized version of can-
alyzing functions “exhibit more robust dynamics than ran-
dom networks, with few attractors and short limit cycles”
(Murrugarra and Laubenbacher, 2011). Therefore, to un-
derstand the properties of canalyzing functions would be
one key aspect of understanding general biological systems
from the perspectives of systems biology and synthetic
biology.
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However, on the one hand, all these existing results on
canalyzing functions have been obtained essentially based
on simulations, as there had been no efficient analytical
tools for such logical networks. On the other hand, it is
realized that the number of all the canalyzing functions
is fast increasing with the network size (see Remark 17)
(Just et al., 2004), thus making it impossible for the
simulation-based approach to exhaust all the possible
canalyzing functions even for networks with only dozens
of nodes. Therefore, we have sufficient reasons to doubt
about all existing results since they have been obtained by
examining only a very limited part of all the possibilities,
but a thorough understanding of canalyzing functions has
to rely on more systematic analysis.

An analytical tool for Boolean networks is recently pro-
posed based on a new product defined for matrices called
“semi-tensor product”(Cheng and Qi, 2010a,b; Cheng
et al., 2011, 2012). This new product allows us to write
Boolean networks as linear discrete systems, and logical
systems can then be solved algebraically. Within this
framework, we investigate canalyzing functions in terms of
their capabilities of affecting the number of attractors of
the Boolean network they belong to. Surprisingly we find
that there exist only three different categories of attractor-
effective canalyzing functions regardless of the network
size. Furthermore, for the first time we are able to show
quantitatively the way how canalyzing functions affect the
number and length of attractors.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the matrix representation of Boolean
networks based on semi-tensor product for completeness,
and discuss canalyzing functions within this framework.
The problem under study is also formally formulated. The
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main results are presented in Section 3, including both
the number of different categories of canalyzing functions
and how these canalyzing functions affect the number and
length of attractors. Section 4 concludes the paper.

Notations: The following notations are used throughout
the paper.

(1) Mn×m: the set of n×m real matrices;
(2) δkn: the kth column of the identity matrix with dimen-

sion n, In;
(3) Col(A) (Row(A)): the set of columns (rows) of matrix

A; Coli(A) (Rowi(A)) is the ith column (row) of A
and ColP (A) (RowP (A)) is the set of all columns
(rows) with their indexes belonging to the set P ;

(4) ∆n := {δkn|1 ≤ k ≤ n} and for simplicity ∆ := ∆2;
(5) A ∈Mn×m is called a logical matrix if Col(A) ⊂ ∆n.

The set of n×m logical matrices is denoted by Ln×m.
A logical matrix [δi1n δi2n . . . δimn ] is briefly denoted by
δn[i1 i2 . . . im].

2. PRELIMINARIES

2.1 Matrix representation of Boolean networks

Definition 1. (Semi-tensor product, (Cheng et al., 2011)).
Let A ∈ Mr1×c1 and B ∈ Mr2×c2 . The semi-tensor
product ofA andB, denoted by AnB, is defined as follows,

AnB := (A⊗ Id/c1)(B ⊗ Id/r2) (1)

where d := lcm(c1, r2) is the least common multiple of c1
and r2 and ⊗ represents the Kronecker product.

Throughout the paper the product is assumed to be semi-
tensor product. It is readily to check that semi-tensor
product is a generalization of normal product of matrices.
Therefore in what follows we might omit the symbol n
wherever no confusion can be caused.

If we map the logical values as follows: TRUE ∼ δ12
and FALSE ∼ δ22 , a Boolean function f(x1, x2, . . . , xn) is
then a mapping from ∆n to ∆. We have the following
fundamental result based on semi-tensor product.

Theorem 2. ((Cheng and Qi, 2010a)). Let f(x1, x2, . . . , xn)
be a Boolean function. There exists a unique Mf ∈ L2×2n ,
called the structure matrix of f , such that

f(x1, x2, . . . , xn) = Mf nn
i=1 xi (2)

Consider a Boolean network with n nodes, as follows,
x1(t+ 1) = f1(x1(t), . . . , xn(t))
...

xn(t+ 1) = fn(x1(t), . . . , xn(t))

(3)

According to Theorem 2, the Boolean network in (3) can
be equivalently represented in its component-wise matrix
representation, as follows,

x1(t+ 1) = L1x(t)
...

xn(t+ 1) = Lnx(t)

(4)

where x(t) := nn
i=1xi(t). The above component-wise ma-

trix representation can further be rewritten in a compact
form, as follows,

x(t+ 1) = Lx(t) (5)

with the structure matrix for the Boolean network being

L = L1 ∗ L2 ∗ . . . ∗ Ln (6)

where ∗ is the Khatri-Rao product. That is,

Coli(L) = nn
j=1 Coli(Lj), i = 1, . . . , 2n (7)

Remark 3. We consider Boolean functions in the function-
ally equivalent sense. That is, two Boolean functions are
regarded to be the same if and only if they are functionally
equivalent. According to this principle, the two Boolean
functions, f(x1, x2) = x1 and g(x1, x2) = (x1 ∧x2)∨ (x1 ∧
¬x2) where ∧, ∨ and ¬ represent conjunction, disjunction
and negation, respectively, are the same despite their dif-
ferent expressions, as the same input can guarantee the
same output for the two functions. In this sense, the map-
ping of Boolean functions from the logical representation
to the matrix representation is bijective and thus we are
free to use the matrix representation in all cases.

2.2 Canalyzing functions

Definition 4. ( (Kauffman et al., 2003)). A Boolean func-
tion f(x1, x2, . . . , xn) is said to be canalyzing on xi if there
exist u, y ∈ ∆ such that

y ≡ f(x1, x2, . . . , xi−1, u, xi+1, . . . , xn), ∀xj ∈ ∆, j 6= i
(8)

where u and y are referred to as the canalyzing and
canalyzed values, respectively.

If the condition in Definition 4 is held, we say that function
f is CF(xui , f

y) for brevity, where we use 1 and 0 to
represent δ12 and δ22 for u, y, respectively. For example, it
is readily to check that the following Boolean function is
CF(x02, f

0) since f(x1, δ
2
2 , x3) ≡ δ22 ,∀x1, x3 ∈ ∆.

f(x1, x2, x3) = (x2 ∧ ¬x1) ∨ (x3 ∧ x2)

Regardless of the canalyzing variable, canalyzing func-
tions can be categorized into four types according to the
four combinations of the canalyzing and canalyzed values,
namely, (1, 1)-type, (1, 0)-type, (0, 1)-type, (0, 0)-type. We
borrow the following proposition from (Li and Cheng,
2010) which offers a criterion of determining the canalyz-
ing type for a given Boolean function. This proposition also
implies that canalyzing functions can be fully described
using the matrix representation of logics based on semi-
tensor product.

Proposition 5. ((Li and Cheng, 2010)). A Boolean func-
tion f(x) = Mfx is canalyzing on xi with (1, 1)-type (res.
(1, 0)-type, (0, 1)-type, (0, 0)-type) if and only if

Mf (Sn
i )T =

(
2n−1δ12 ∗

)
(
res.

(
2n−1δ22 ∗

)
,
(
∗ 2n−1δ12

)
,
(
∗ 2n−1δ22

))
(9)

where Sn
i ∈ L2×2n is constructed by 2i blocks with equal

size of 2 × 2n−i and the odd and even blocks being
δ2[1, 1, . . . , 1] and δ2[2, 2, . . . , 2], respectively.

Remark 6. Suppose f is CF(xui , f
y). ¬u is normally not

the canalyzing value for xi at the same time, since other-
wise function f will depend only on xi and is thus trivial.
It thus follows that a canalyzing variable can determine
half of all the possible outputs of a non-trivial Boolean
function. This shows the importance of the canalyzing
variables and consequently canalyzing functions.
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Remark 7. Throughout the paper we assume that a cana-
lyzing function can only be canalyzing on exactly one vari-
able. This assumption is due to the following fact: when
multiple canalyzing variables exist in a single function,
no individual variable can determine the output of the
function by itself which is conflicting with the concept of
canalization (Remark 6). Suppose, for example, function
f is canalyzing on both x1 and x2. It immediately follows
that the canalyzed values for x1 and x2 have to be the
same and therefore neither x1 nor x2 is “independently”
canalyzed.

2.3 Canalyzing functions in a Boolean network

Although the concept of canalization is applying to a single
Boolean function, the evaluation of it has to be done at
the Boolean network level. For Boolean network models, it
is very useful to study the general properties in the mean
sense, that is, the ensemble-based approach. This approach
works as follows. Suppose we are interested in the effects
of certain characteristic in Boolean networks (canalizing
functions in the present study). We can construct all the
possible Boolean networks that satisfy this characteristic
(the ensemble) and then study the mean properties of
this ensemble. Then, it is fair to claim that the concerned
characteristic contributes to the observed properties in the
general sense.

For brevity we denote by CF(xui , f
y
j ) if function fj in

a Boolean network is CF(xui , f
y). All such canalyzing

functions in Boolean networks with size n are denoted by
the following set

CnCF := {CF(xui , f
y
j ), 1 ≤ i, j ≤ n, u, y ∈ ∆} (10)

Denote by BN(n : xui , f
y
j ) a Boolean network with size n

and a canalyzing function CF(xui , f
y
j ) while other functions

in it are arbitrarily constructed. For this specific canalyz-
ing function, CF(xui , f

y
j ), the ensemble of interest is

BnCF(xu
i
,fy

j
) := {BN(n : xui , f

y
j )} (11)

The functionality of CF(xui , f
y
j ) can be inferred from the

mean properties of the ensemble Bn
CF(xu

i
,fy

j
)
.

In particular, the ensemble of Boolean networks without
any restrictions is referred to as “absolute random Boolean
network” (ARBN), that is,

Bn := {BN(n)} (12)

where BN(n) represents any Boolean network with size n.

In the present study we are particularly interested in how
canalyzing functions can affect the number of attractors,
for which the following definition is useful.

Definition 8. (Attractor-effective equivalence). Two cana-
lyzing functions in a Boolean network of size n, CF(xu1

i1
, fy1

j1
)

and CF(xu2
i2
, fy2

j2
), are said to be attractor-effective equiv-

alent if the two ensembles Bn
CF(x

u1
i1

,f
y1
j1

)
and Bn

CF(x
u2
i2

,f
y2
j2

)

have exactly the same mean number of attractors of any
length.

Attractor-effective equivalence defines an equivalence re-
lation over CnCF. It then divides CnCF into several equiva-
lence classes. Canalyzing functions in the same attractor-

effective equivalence class affect the mean number of at-
tractors in the same way.

Denote the set of the attractor-effective equivalence classes
by En

CF. The problem of interest in the present study is
mainly regarding En

CF. Specifically,

Problem: For any n, find out

(1) The structure of En
CF: the number of attractor-

effective equivalence classes and how these equiva-
lence classes are constructed;

(2) The mean number of attractors for all the attractor-
effective equivalence classes: how different attractor-
effective equivalent classes affect the number of at-
tractors in different ways.

2.4 Properties of the ensemble of interest

The following proposition discovers the properties of the
ensemble of Bn

CF(xu
i
,fy

j
)

which are useful preparations for

the main results to be presented in the next section. For
brevity hereafter we call ij the “state” of the column
j for a Boolean network with structure matrix L and

Colj(L) = δ
ij
2n .

Proposition 9. Consider BN(n : xui , f
y
j ) ∈ Bn

CF(xu
i
,fy

j
)

with

its structure matrix being L. The following inclusion
relationships are held for different types of canalyzing
functions.

(1, 1)-type→V(Pn
i ) ⊆ Pn

j (13a)

(1, 0)-type→V(Pn
i ) ⊆ P̄n

j (13b)

(0, 1)-type→V(P̄n
i ) ⊆ Pn

j (13c)

(0, 0)-type→V(P̄n
i ) ⊆ P̄n

j (13d)

where V(P ) is the set of the possible states of ColP (L) and

Pn
i :={k|Colk(Sn

i ) = δ12}
P̄n
i :={k|Colk(Sn

i ) = δ22} (14)

Proof. We prove the case of (1, 1)-type. Other cases follow
similarly.

Consider the component-wise matrix representation in (4).
A canalyzing function, CF(x1i , f

1
j ) means that the values

in ColPn
i

(Lj) must be δ12 . Then, from the transformation

from the component-wise matrix representation in (4) to
the compact matrix representation in (5), it is readily to
check that the states of those columns in L must belong
to Pn

j . This completes the proof.

Example 10. Consider the following Boolean network where
∗ means the values at these positions can be arbitrary.

x1(t+ 1) = δ2[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]x(t)

x2(t+ 1) = δ2[2 2 2 2 ∗ ∗ ∗ ∗]x(t)

x3(t+ 1) = δ2[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]x(t).

It is not difficult to verify that this Boolean network is
BN(3 : x11, f

0
2 ). Furthermore, according to Proposition 9

it is immediately seen that columns belonging to P 3
1 =

{1, 2, 3, 4} in its compact structure matrix L can only
choose states from P̄ 3

2 = {3, 4, 7, 8}.
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3. CATEGORIZING ATTRACTOR-EFFECTIVE
CANALYZING FUNCTIONS

Before proceeding with the main results in this section,
we first discuss how the mean number of attractors of an
ensemble of Boolean networks can be calculated in general.

Consider the compact matrix representation of Boolean

networks in (5). For any Colj(L) = δ
ij
2n , we write it as

a 2-tuple with both the column index and the state, i.e.,
(j, ij). L can thus be rewritten as

L := {(j, ij)} (15)

Definition 11. A chain in a Boolean network is a sequence
of different states with the following form using the 2-tuple
representation

(i1, i2)→ (i2, i3)→ . . .→ (ik−1, ik) (16)

where ij1 6= ij2 , 1 ≤ j1, j2 ≤ k − 1.

Simple calculations show that a column (i1, i2) in L has

the capability of mapping δi12n to δi22n . The above chain can

thus transform δi12n to δik2n through k − 1 steps.

The following proposition is straightforward yet impor-
tant.

Proposition 12. A group of states can form an attractor if
and only if they can form a chain as in (16) with i1 = ik.
The length of the attractor is k.

Example 13. Consider Example 10 again. L can now be
written as

L = [(1, 3)(2, 7)(3, 7)(4, 8)(5, 1)(6, 5)(7, 5)(8, 6)]

It is readily seen that (1, 3)→ (3, 7) is a chain by Definition
11 and (1, 3)→ (3, 7)→ (7, 5)→ (5, 1) is an attractor with
length 4 by Proposition 12.

Theorem 14. (Mean number of attractors). Given an en-
semble of Boolean networks. Suppose for any j and ij ,
the probability of the state of Colj(L) being ij is known
independently as pjij (we refer to it as the “transition
probability” hereafter). The mean number of attractors
of any lengths for this ensemble, Nk, can be obtained as
follows,

Nk =
∑

i1=1,...,2n

i2 6=i1
...

ik 6=i1,...,ik−1

pi1i2pi2i3 . . . pik−1ikpiki1 ,∀k ≥ 1 (17)

Proof. The theorem is straightforward by Proposition 12.

Corollary 15. (Mean number of attractors of ARBN). The
mean number of attractors of any length for the ensemble
Bn is as follows,

Nn,0
k =

2n!

2kn(2n − k)!
,∀k ≥ 1 (18)

Proof. Notice first that for ARBN, pij ≡ 1
2n ,∀i, j. There-

fore the product pi1i2pi2i3 . . . pik−1ikpiki1 always contribute

a constant 1
2kn . The number of all these possible products

equals to all the possible choices of the following proce-
dures: 1) choose k states out of 2n possible states; and 2)
permutate these k states. It is readily to calculate that
the latter gives C2n

k k! possible choices where Cj
i is the

combination of selecting i out of j items.

The corollary is thus correct by Theorem 14.

3.1 The attractor-effective equivalence classes

Theorem 16. |En
CF| = 3,∀n ≥ 2 and is constructed as

follows

En
CF = {En,1

CF ,E
n,2
CF ,E

n,3
CF} (19)

where | · | denotes the cardinality of a set and

En,1
CF :={CF(xui , f

y
j )|i = j, (u, y) = (1, 1) or (0, 0)} (20a)

En,2
CF :={CF(xui , f

y
j )|i = j, (u, y) = (1, 0) or (0, 1)} (20b)

En,3
CF :={CF(xui , f

y
j )|i 6= j} (20c)

In particular,

E1
CF = {E1,1

CF,E
1,2
CF} (21)

Proof. We prove the theorem in the following three steps.

(1) Let x′ := xi n x1 n x2 . . .n xi−1 n xi+1 . . .n xn and
rewrite the compact matrix representation in (5) to
be dependent on x′. Such a process obviously does
not affect the attractors of the Boolean network as
attractors are intrinsic properties which do not rely
on specific representations. This implies that, in terms
of the capability of affecting the number of attractors,
any canalyzing function can be equivalent to a cana-
lyzing function that is canalyzing on its first variable.
Therefore, we may consider only canalyzing functions
with the form CF(xu1 , f

y
j ). In addition, it is easy to

check that in this simplification process CF(xu1 , f
y
1 )

represents and only represents those canalyzing func-
tions with i = j.

(2) Consider CF(xu1 , f
y
1 ), i.e., CF(xui , f

y
j ) with i = j.

According to Proposition 9, we have the following in-
clusion relationships with different canalyzing types,

(1, 1)-type→V(Pn
1 ) ⊆ Pn

1 (22a)

(1, 0)-type→V(Pn
1 ) ⊆ P̄n

1 (22b)

(0, 1)-type→V(P̄n
1 ) ⊆ Pn

1 (22c)

(0, 0)-type→V(P̄n
1 ) ⊆ P̄n

1 (22d)

(a) (1, 1)-type and (0, 0)-type canalyzing functions,

that is, En,1
CF . The transition probability of these

two types of canalyzing functions are given as
follows.

p
(x1

1,f
1
1 )

ij =


1

2n−1
, i, j ∈ Pn

1

0, i ∈ Pn
1 , j ∈ P̄n

1
1

2n
, i ∈ P̄n

1

(23a)

p
(x0

1,f
0
1 )

ij =


1

2n−1
, i, j ∈ P̄n

1

0, i ∈ P̄n
1 , j ∈ Pn

1
1

2n
, i ∈ Pn

1

(23b)

It is not difficult to see that these two types
of transition probabilities can give the same Nk

in (17) as the exchange of Pn
1 and P̄n

1 does not
change the value of Nk. That is, all canalyzing
functions in En,1

CF are attractor-effective equiva-
lent.

(b) (1, 0)-type and (0, 1)-type canalyzing functions,

that is, En,2
CF . The transition probability of these

two types of canalyzing functions are given as
follows.
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p
(x1

1,f
0
1 )

ij =


0, i, j ∈ Pn

1
1

2n−1
, i ∈ Pn

1 , j ∈ P̄n
1

1

2n
, i ∈ P̄n

1

(24a)

p
(x0

1,f
1
1 )

ij =


0, i, j ∈ P̄n

1
1

2n−1
, i ∈ P̄n

1 , j ∈ Pn
1

1

2n
, i ∈ Pn

1

(24b)

Due to the same reason as above we can
confirm that all canalyzing functions in En,2

CF
are attractor-effective equivalent but are different
from En,1

CF .

(3) Consider CF(xu1 , f
y
j 6=1), that is, En,3

CF . The inclusion
relationships are as follows,

(1, 1)-type→V(Pn
1 ) ⊆ Pn

j (25a)

(1, 0)-type→V(Pn
1 ) ⊆ P̄n

j (25b)

(0, 1)-type→V(P̄n
1 ) ⊆ Pn

j (25c)

(0, 0)-type→V(P̄n
1 ) ⊆ P̄n

j (25d)

The transition probability for CF(x11, f
1
j 6=1) can be

written as follows.

p
(x1

1,f
1
j 6=1)

ij =


1

2n−1
, i ∈ Pn

1 , j ∈ Pn
j ∩ Pn

1

1

2n−1
, i ∈ Pn

1 , j ∈ Pn
j \Pn

1

1

2n
, i ∈ P̄n

1

(26)

Notice that for any j 6= 1, |(Pn
j )± ∩ (Pn

1 )±| =

|(Pn
j )±\(Pn

1 )±| = 1
2n−2 where (Pn

j )± can be either Pn
j

or P̄n
j , j = 1, . . . , n. It is then not difficult to verify

that all CF(xu1 , f
y
j 6=1) give the same Nk in (17) (more

details can be referred in the proof of Theorem 18
to be presented later), meaning that all canalyzing

functions in En,3
CF are attractor-effective equivalent.

Furthermore, (21) is true since for n = 1 we do not have

canalyzing function of the form CF(xu1 , f
y
j 6=1) and thus E1,3

CF

does not exist.

Remark 17. The numbers of all canalyzing functions in
the presence of possibly multiple canalyzing variables has
shown to be increasing exponentially with the network
size (Just et al., 2004). The set of canalyzing functions
we consider in this paper, CnCF, is believed to be the
most meaningful subset. It is readily to calculate that
|CnCF| = 4n2. Theorem 16 means that there exist only
three different attractor-effective canalyzing functions (for
n ≥ 2) out of the 4n2 possible candidates. This simplifies
significantly all analysis regarding the number of attractors
affected by canalyzing functions.

3.2 Mean number of attractors for different attractor
effective equivalence classes

Theorem 18. The mean number of attractors of the three
attractor-effective equivalence classes in En

CF are as fol-
lows.

(1) En,1
CF .

Nn,1
k = (1 +

1

2k
)Nn−1,0

k (27)

(2) En,2
CF .

Nn,2
k =

b k2 c∑
i=0

k(k − i− 1)!i!Ck−i
i C2n−1

i C2n−1

k−i 2i−nk

(28)

(3) En,3
CF .

Nn,3
k =

b k2 c∑
i=0

k−i∑
j=i

k−i−j∑
l=0

pi,j,l,kC
2n−2

i C2n−2

j C2n−2

l

× C2n−2

k−i−j−l2
k+j+l−nk (29)

where pi,j,l,k is defined as follows
k(j − 1)!Gk−i−j−l

j Cj
i i!G

l
j , j > 0

k! i = j = 0, l = k, 0

0 otherwise.

(30)

and Gj
i is the number of choices when allocating j

items into i groups.

Proof. We give the proof for En,1
CF and En,3

CF . En,2
CF can

readily follow from En,3
CF .

(1) En,1
CF . Consider Bn

CF(x1
1,f

1
1 )

. The transition probability
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from both Pn

1 and P̄n
1 and therefore the attractors

contributed by i, j ∈ Pn
1 and i ∈ P̄n

1 can be calculated
independently. By Theorem 14, it is seen that the
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2k
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CF(x1
1,f

1
2 )

. From (26) it is known

p
(x1

1,f
1
2 )
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1
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1 , j ∈ Pn
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1

1
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2 \Pn
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(31)
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1 \A,
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Table 1. Number of attractors for various ensembles with network size 3.

Ensemble \Number \Length 1 2 3 4 5 6 7 8

Bn 1 0.875 0.6563 0.4102 0.2051 0.0769 0.0192 0.0024

En,1
CF 1.5000 0.9375 0.4219 0.0996 0 0 0 0

En,2
CF 0.5000 1.1875 0.6094 0.4746 0.2051 0.0747 0.0154 0.0011

En,3
CF 1 0.8125 0.6094 0.3496 0.1465 0.0439 0.0077 0.0005

Now consider all the possible permutations of these
k states, the total number of which is denoted by
pi,j,l,k. These permutations can be valid in only the
following two cases.
(a) j > 0. In this case we first allocate j states from C

into the k possible positions, resulting in k(j−1)!
possible choices. Note that all the states in A can
be put either before or behind the states in C,
therefore we can allocate the k − i− j − l states

from A to j groups, i.e., Gk−i−j−l
j . Although now

we have k − i − l available positions, the states
from B are not able to be put arbitrarily, i.e.,
they can not be behind A (the states from A
can never be transformed to states in B directly),
and therefore the available positions are only j.
Notice that states from B can not be transformed
to states in itself, meaning that we can only per-
mutate them but not allocate them into groups.
This will contribute a factor of Cj

i i!. At last, l
states from D can only be grouped into j groups
(they can not be behind A nor B), which is Gl

j .
(b) i = j = 0, k = k, 0. In this case there are no

states from B nor C and the states can only be
from either A or D. It is immediately clear that
all the possible choices are k!.

The above analysis gives (30).

This completes the proof.

Remark 19. From Theorem 18 we are able to calculate
the mean number of attractors for different canalyzing
functions directly, which had been impossible before. More
properties of canalyzing functions can also be possibly
examined. For example, the comparison of the mean num-
ber of attractors of Boolean networks with size 3 between
without and with the three types of different attractor-
effective canalyzing functions is shown in Table 1. It is
observed that in general Boolean networks with canalyzing
functions tend to have less attractors with shorter lengths,
which confirms previous simulation-based findings (Mur-
rugarra and Laubenbacher, 2011).

4. CONCLUSIONS

Canalyzing functions have been shown to be biologically
significant. For the first time we describe canalyzing func-
tions algebraically using a novel matrix representation
of logics based on semi-tensor product. Within this new
framework, we categorize canalyzing functions in terms of
their capabilities of affecting the number of attractors in
the Boolean network. Surprisedly we find that there exist
only three different attractor-effective canalyzing functions
for all sizes of Boolean networks larger than 1, despite the
fast increasing number of all possible canalyzing functions.
The calculation of the mean number of attractors for
Boolean networks with canalyzing functions confirms pre-
vious simulation-based findings. It is believed that further

analysis within this analytical framework will result in
meaningful findings which are impossible to obtain using
simulations.
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Abstract: Canalyzing Boolean functions have shown their popularity in various biological
networks and established themselves to be biologically meaningful at the system level, marking
their importance in the analysis of stability and robustness of such complex systems. Based on
a matrix representation of Boolean networks due to the recently developed tool called semi-
tensor product, we categorize canalyzing functions in terms of their capabilities of affecting
the number of attractors in the Boolean network, which is one key index for the stability and
robustness of Boolean networks. We show that there exist only three categories of attractor-
effective canalyzing functions for any network size larger than 1, while the number of all the
interested canalyzing functions is proportional to the square of the network size. We also give
the explicit expression of the mean number of attractors with any length for Boolean networks
with a single canalyzing function. Compared with Boolean networks without any canalyzing
functions, we are able to show quantitatively how canalyzing functions can affect the mean
number and length of attractors in Boolean networks for the first time.
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1. INTRODUCTION

Boolean networks are simple yet meaningful models for
biological networks. One can investigate universal proper-
ties of biological systems such as robustness, evolutionary
preference, etc. based on such models(Zhao and Krishnan,
2016; Akman et al., 2012; Handorf and Klipp, 2012; Zhao
and Krishnan, 2014). Within this Boolean network mod-
eling framework, canalyzing functions have shown their
popularity in various Boolean network models of biological
networks. A Boolean function is said to be canalyzing on
one of its variables if a specific logical value of this variable
(either TRUE or FALSE) can determine the output of the
whole Boolean function (either TRUE or FALSE) what-
ever values other variables choose. Canalyzing functions
are believed to be biologically significant at the systems
level, and are closely related to the system and control
concepts in the general sense (Kauffman et al., 2004, 2003;
Paul et al., 2006; Murrugarra and Laubenbacher, 2011).
For example, genetic networks with canalyzing functions
are shown to be always stable (Kauffman et al., 2004,
2003). Boolean networks with a generalized version of can-
alyzing functions “exhibit more robust dynamics than ran-
dom networks, with few attractors and short limit cycles”
(Murrugarra and Laubenbacher, 2011). Therefore, to un-
derstand the properties of canalyzing functions would be
one key aspect of understanding general biological systems
from the perspectives of systems biology and synthetic
biology.

� This work was supported in part by the National Natural Science
Foundation of China under Grant 61673350, in part by the Thousand
Talents Plan of China and Zhejiang, and in part by the Major
Projects Foundation of Zhejiang under Grant 2017C03060.
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However, on the one hand, all these existing results on
canalyzing functions have been obtained essentially based
on simulations, as there had been no efficient analytical
tools for such logical networks. On the other hand, it is
realized that the number of all the canalyzing functions
is fast increasing with the network size (see Remark 17)
(Just et al., 2004), thus making it impossible for the
simulation-based approach to exhaust all the possible
canalyzing functions even for networks with only dozens
of nodes. Therefore, we have sufficient reasons to doubt
about all existing results since they have been obtained by
examining only a very limited part of all the possibilities,
but a thorough understanding of canalyzing functions has
to rely on more systematic analysis.

An analytical tool for Boolean networks is recently pro-
posed based on a new product defined for matrices called
“semi-tensor product”(Cheng and Qi, 2010a,b; Cheng
et al., 2011, 2012). This new product allows us to write
Boolean networks as linear discrete systems, and logical
systems can then be solved algebraically. Within this
framework, we investigate canalyzing functions in terms of
their capabilities of affecting the number of attractors of
the Boolean network they belong to. Surprisingly we find
that there exist only three different categories of attractor-
effective canalyzing functions regardless of the network
size. Furthermore, for the first time we are able to show
quantitatively the way how canalyzing functions affect the
number and length of attractors.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the matrix representation of Boolean
networks based on semi-tensor product for completeness,
and discuss canalyzing functions within this framework.
The problem under study is also formally formulated. The
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realized that the number of all the canalyzing functions
is fast increasing with the network size (see Remark 17)
(Just et al., 2004), thus making it impossible for the
simulation-based approach to exhaust all the possible
canalyzing functions even for networks with only dozens
of nodes. Therefore, we have sufficient reasons to doubt
about all existing results since they have been obtained by
examining only a very limited part of all the possibilities,
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main results are presented in Section 3, including both
the number of different categories of canalyzing functions
and how these canalyzing functions affect the number and
length of attractors. Section 4 concludes the paper.

Notations: The following notations are used throughout
the paper.

(1) Mn×m: the set of n×m real matrices;
(2) δkn: the kth column of the identity matrix with dimen-

sion n, In;
(3) Col(A) (Row(A)): the set of columns (rows) of matrix

A; Coli(A) (Rowi(A)) is the ith column (row) of A
and ColP (A) (RowP (A)) is the set of all columns
(rows) with their indexes belonging to the set P ;

(4) ∆n := {δkn|1 ≤ k ≤ n} and for simplicity ∆ := ∆2;
(5) A ∈ Mn×m is called a logical matrix if Col(A) ⊂ ∆n.

The set of n×m logical matrices is denoted by Ln×m.
A logical matrix [δi1n δi2n . . . δimn ] is briefly denoted by
δn[i1 i2 . . . im].

2. PRELIMINARIES

2.1 Matrix representation of Boolean networks

Definition 1. (Semi-tensor product, (Cheng et al., 2011)).
Let A ∈ Mr1×c1 and B ∈ Mr2×c2 . The semi-tensor
product ofA andB, denoted by A�B, is defined as follows,

A�B := (A⊗ Id/c1)(B ⊗ Id/r2) (1)

where d := lcm(c1, r2) is the least common multiple of c1
and r2 and ⊗ represents the Kronecker product.

Throughout the paper the product is assumed to be semi-
tensor product. It is readily to check that semi-tensor
product is a generalization of normal product of matrices.
Therefore in what follows we might omit the symbol �
wherever no confusion can be caused.

If we map the logical values as follows: TRUE ∼ δ12
and FALSE ∼ δ22 , a Boolean function f(x1, x2, . . . , xn) is
then a mapping from ∆n to ∆. We have the following
fundamental result based on semi-tensor product.

Theorem 2. ((Cheng and Qi, 2010a)). Let f(x1, x2, . . . , xn)
be a Boolean function. There exists a unique Mf ∈ L2×2n ,
called the structure matrix of f , such that

f(x1, x2, . . . , xn) = Mf �n
i=1 xi (2)

Consider a Boolean network with n nodes, as follows,


x1(t+ 1) = f1(x1(t), . . . , xn(t))
...

xn(t+ 1) = fn(x1(t), . . . , xn(t))

(3)

According to Theorem 2, the Boolean network in (3) can
be equivalently represented in its component-wise matrix
representation, as follows,



x1(t+ 1) = L1x(t)
...

xn(t+ 1) = Lnx(t)

(4)

where x(t) := �n
i=1xi(t). The above component-wise ma-

trix representation can further be rewritten in a compact
form, as follows,

x(t+ 1) = Lx(t) (5)

with the structure matrix for the Boolean network being

L = L1 ∗ L2 ∗ . . . ∗ Ln (6)

where ∗ is the Khatri-Rao product. That is,

Coli(L) = �n
j=1 Coli(Lj), i = 1, . . . , 2n (7)

Remark 3. We consider Boolean functions in the function-
ally equivalent sense. That is, two Boolean functions are
regarded to be the same if and only if they are functionally
equivalent. According to this principle, the two Boolean
functions, f(x1, x2) = x1 and g(x1, x2) = (x1 ∧x2)∨ (x1 ∧
¬x2) where ∧, ∨ and ¬ represent conjunction, disjunction
and negation, respectively, are the same despite their dif-
ferent expressions, as the same input can guarantee the
same output for the two functions. In this sense, the map-
ping of Boolean functions from the logical representation
to the matrix representation is bijective and thus we are
free to use the matrix representation in all cases.

2.2 Canalyzing functions

Definition 4. ( (Kauffman et al., 2003)). A Boolean func-
tion f(x1, x2, . . . , xn) is said to be canalyzing on xi if there
exist u, y ∈ ∆ such that

y ≡ f(x1, x2, . . . , xi−1, u, xi+1, . . . , xn), ∀xj ∈ ∆, j �= i
(8)

where u and y are referred to as the canalyzing and
canalyzed values, respectively.

If the condition in Definition 4 is held, we say that function
f is CF(xu

i , f
y) for brevity, where we use 1 and 0 to

represent δ12 and δ22 for u, y, respectively. For example, it
is readily to check that the following Boolean function is
CF(x0

2, f
0) since f(x1, δ

2
2 , x3) ≡ δ22 , ∀x1, x3 ∈ ∆.

f(x1, x2, x3) = (x2 ∧ ¬x1) ∨ (x3 ∧ x2)

Regardless of the canalyzing variable, canalyzing func-
tions can be categorized into four types according to the
four combinations of the canalyzing and canalyzed values,
namely, (1, 1)-type, (1, 0)-type, (0, 1)-type, (0, 0)-type. We
borrow the following proposition from (Li and Cheng,
2010) which offers a criterion of determining the canalyz-
ing type for a given Boolean function. This proposition also
implies that canalyzing functions can be fully described
using the matrix representation of logics based on semi-
tensor product.

Proposition 5. ((Li and Cheng, 2010)). A Boolean func-
tion f(x) = Mfx is canalyzing on xi with (1, 1)-type (res.
(1, 0)-type, (0, 1)-type, (0, 0)-type) if and only if

Mf (S
n
i )

T =
(
2n−1δ12 ∗

)
(
res.

(
2n−1δ22 ∗

)
,
(
∗ 2n−1δ12

)
,
(
∗ 2n−1δ22

))
(9)

where Sn
i ∈ L2×2n is constructed by 2i blocks with equal

size of 2 × 2n−i and the odd and even blocks being
δ2[1, 1, . . . , 1] and δ2[2, 2, . . . , 2], respectively.

Remark 6. Suppose f is CF(xu
i , f

y). ¬u is normally not
the canalyzing value for xi at the same time, since other-
wise function f will depend only on xi and is thus trivial.
It thus follows that a canalyzing variable can determine
half of all the possible outputs of a non-trivial Boolean
function. This shows the importance of the canalyzing
variables and consequently canalyzing functions.
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Remark 7. Throughout the paper we assume that a cana-
lyzing function can only be canalyzing on exactly one vari-
able. This assumption is due to the following fact: when
multiple canalyzing variables exist in a single function,
no individual variable can determine the output of the
function by itself which is conflicting with the concept of
canalization (Remark 6). Suppose, for example, function
f is canalyzing on both x1 and x2. It immediately follows
that the canalyzed values for x1 and x2 have to be the
same and therefore neither x1 nor x2 is “independently”
canalyzed.

2.3 Canalyzing functions in a Boolean network

Although the concept of canalization is applying to a single
Boolean function, the evaluation of it has to be done at
the Boolean network level. For Boolean network models, it
is very useful to study the general properties in the mean
sense, that is, the ensemble-based approach. This approach
works as follows. Suppose we are interested in the effects
of certain characteristic in Boolean networks (canalizing
functions in the present study). We can construct all the
possible Boolean networks that satisfy this characteristic
(the ensemble) and then study the mean properties of
this ensemble. Then, it is fair to claim that the concerned
characteristic contributes to the observed properties in the
general sense.

For brevity we denote by CF(xu
i , f

y
j ) if function fj in

a Boolean network is CF(xu
i , f

y). All such canalyzing
functions in Boolean networks with size n are denoted by
the following set

Cn
CF := {CF(xu

i , f
y
j ), 1 ≤ i, j ≤ n, u, y ∈ ∆} (10)

Denote by BN(n : xu
i , f

y
j ) a Boolean network with size n

and a canalyzing function CF(xu
i , f

y
j ) while other functions

in it are arbitrarily constructed. For this specific canalyz-
ing function, CF(xu

i , f
y
j ), the ensemble of interest is

Bn
CF(xu

i
,fy

j
) := {BN(n : xu

i , f
y
j )} (11)

The functionality of CF(xu
i , f

y
j ) can be inferred from the

mean properties of the ensemble Bn
CF(xu

i
,fy

j
)
.

In particular, the ensemble of Boolean networks without
any restrictions is referred to as “absolute random Boolean
network” (ARBN), that is,

Bn := {BN(n)} (12)

where BN(n) represents any Boolean network with size n.

In the present study we are particularly interested in how
canalyzing functions can affect the number of attractors,
for which the following definition is useful.

Definition 8. (Attractor-effective equivalence). Two cana-
lyzing functions in a Boolean network of size n, CF(xu1

i1
, fy1

j1
)

and CF(xu2
i2
, fy2

j2
), are said to be attractor-effective equiv-

alent if the two ensembles Bn
CF(x

u1
i1

,f
y1
j1

)
and Bn

CF(x
u2
i2

,f
y2
j2

)

have exactly the same mean number of attractors of any
length.

Attractor-effective equivalence defines an equivalence re-
lation over Cn

CF. It then divides Cn
CF into several equiva-

lence classes. Canalyzing functions in the same attractor-

effective equivalence class affect the mean number of at-
tractors in the same way.

Denote the set of the attractor-effective equivalence classes
by En

CF. The problem of interest in the present study is
mainly regarding En

CF. Specifically,

Problem: For any n, find out

(1) The structure of En
CF: the number of attractor-

effective equivalence classes and how these equiva-
lence classes are constructed;

(2) The mean number of attractors for all the attractor-
effective equivalence classes: how different attractor-
effective equivalent classes affect the number of at-
tractors in different ways.

2.4 Properties of the ensemble of interest

The following proposition discovers the properties of the
ensemble of Bn

CF(xu
i
,fy

j
)
which are useful preparations for

the main results to be presented in the next section. For
brevity hereafter we call ij the “state” of the column
j for a Boolean network with structure matrix L and

Colj(L) = δ
ij
2n .

Proposition 9. Consider BN(n : xu
i , f

y
j ) ∈ Bn

CF(xu
i
,fy

j
)
with

its structure matrix being L. The following inclusion
relationships are held for different types of canalyzing
functions.

(1, 1)-type →V(Pn
i ) ⊆ Pn

j (13a)

(1, 0)-type →V(Pn
i ) ⊆ P̄n

j (13b)

(0, 1)-type →V(P̄n
i ) ⊆ Pn

j (13c)

(0, 0)-type →V(P̄n
i ) ⊆ P̄n

j (13d)

where V(P ) is the set of the possible states of ColP (L) and

Pn
i :={k|Colk(Sn

i ) = δ12}
P̄n
i :={k|Colk(Sn

i ) = δ22} (14)

Proof. We prove the case of (1, 1)-type. Other cases follow
similarly.

Consider the component-wise matrix representation in (4).
A canalyzing function, CF(x1

i , f
1
j ) means that the values

in ColPn
i
(Lj) must be δ12 . Then, from the transformation

from the component-wise matrix representation in (4) to
the compact matrix representation in (5), it is readily to
check that the states of those columns in L must belong
to Pn

j . This completes the proof.

Example 10. Consider the following Boolean network where
∗ means the values at these positions can be arbitrary.




x1(t+ 1) = δ2[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]x(t)
x2(t+ 1) = δ2[2 2 2 2 ∗ ∗ ∗ ∗]x(t)
x3(t+ 1) = δ2[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]x(t).

It is not difficult to verify that this Boolean network is
BN(3 : x1

1, f
0
2 ). Furthermore, according to Proposition 9

it is immediately seen that columns belonging to P 3
1 =

{1, 2, 3, 4} in its compact structure matrix L can only
choose states from P̄ 3

2 = {3, 4, 7, 8}.
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sense, that is, the ensemble-based approach. This approach
works as follows. Suppose we are interested in the effects
of certain characteristic in Boolean networks (canalizing
functions in the present study). We can construct all the
possible Boolean networks that satisfy this characteristic
(the ensemble) and then study the mean properties of
this ensemble. Then, it is fair to claim that the concerned
characteristic contributes to the observed properties in the
general sense.

For brevity we denote by CF(xu
i , f

y
j ) if function fj in

a Boolean network is CF(xu
i , f

y). All such canalyzing
functions in Boolean networks with size n are denoted by
the following set

Cn
CF := {CF(xu

i , f
y
j ), 1 ≤ i, j ≤ n, u, y ∈ ∆} (10)

Denote by BN(n : xu
i , f

y
j ) a Boolean network with size n

and a canalyzing function CF(xu
i , f

y
j ) while other functions

in it are arbitrarily constructed. For this specific canalyz-
ing function, CF(xu

i , f
y
j ), the ensemble of interest is

Bn
CF(xu

i
,fy

j
) := {BN(n : xu

i , f
y
j )} (11)

The functionality of CF(xu
i , f

y
j ) can be inferred from the

mean properties of the ensemble Bn
CF(xu

i
,fy

j
)
.

In particular, the ensemble of Boolean networks without
any restrictions is referred to as “absolute random Boolean
network” (ARBN), that is,

Bn := {BN(n)} (12)

where BN(n) represents any Boolean network with size n.

In the present study we are particularly interested in how
canalyzing functions can affect the number of attractors,
for which the following definition is useful.

Definition 8. (Attractor-effective equivalence). Two cana-
lyzing functions in a Boolean network of size n, CF(xu1

i1
, fy1

j1
)

and CF(xu2
i2
, fy2

j2
), are said to be attractor-effective equiv-

alent if the two ensembles Bn
CF(x

u1
i1

,f
y1
j1

)
and Bn

CF(x
u2
i2

,f
y2
j2

)

have exactly the same mean number of attractors of any
length.

Attractor-effective equivalence defines an equivalence re-
lation over Cn

CF. It then divides Cn
CF into several equiva-

lence classes. Canalyzing functions in the same attractor-

effective equivalence class affect the mean number of at-
tractors in the same way.

Denote the set of the attractor-effective equivalence classes
by En

CF. The problem of interest in the present study is
mainly regarding En

CF. Specifically,

Problem: For any n, find out

(1) The structure of En
CF: the number of attractor-

effective equivalence classes and how these equiva-
lence classes are constructed;

(2) The mean number of attractors for all the attractor-
effective equivalence classes: how different attractor-
effective equivalent classes affect the number of at-
tractors in different ways.

2.4 Properties of the ensemble of interest

The following proposition discovers the properties of the
ensemble of Bn

CF(xu
i
,fy

j
)
which are useful preparations for

the main results to be presented in the next section. For
brevity hereafter we call ij the “state” of the column
j for a Boolean network with structure matrix L and

Colj(L) = δ
ij
2n .

Proposition 9. Consider BN(n : xu
i , f

y
j ) ∈ Bn

CF(xu
i
,fy

j
)
with

its structure matrix being L. The following inclusion
relationships are held for different types of canalyzing
functions.

(1, 1)-type →V(Pn
i ) ⊆ Pn

j (13a)

(1, 0)-type →V(Pn
i ) ⊆ P̄n

j (13b)

(0, 1)-type →V(P̄n
i ) ⊆ Pn

j (13c)

(0, 0)-type →V(P̄n
i ) ⊆ P̄n

j (13d)

where V(P ) is the set of the possible states of ColP (L) and

Pn
i :={k|Colk(Sn

i ) = δ12}
P̄n
i :={k|Colk(Sn

i ) = δ22} (14)

Proof. We prove the case of (1, 1)-type. Other cases follow
similarly.

Consider the component-wise matrix representation in (4).
A canalyzing function, CF(x1

i , f
1
j ) means that the values

in ColPn
i
(Lj) must be δ12 . Then, from the transformation

from the component-wise matrix representation in (4) to
the compact matrix representation in (5), it is readily to
check that the states of those columns in L must belong
to Pn

j . This completes the proof.

Example 10. Consider the following Boolean network where
∗ means the values at these positions can be arbitrary.




x1(t+ 1) = δ2[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]x(t)
x2(t+ 1) = δ2[2 2 2 2 ∗ ∗ ∗ ∗]x(t)
x3(t+ 1) = δ2[∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]x(t).

It is not difficult to verify that this Boolean network is
BN(3 : x1

1, f
0
2 ). Furthermore, according to Proposition 9

it is immediately seen that columns belonging to P 3
1 =

{1, 2, 3, 4} in its compact structure matrix L can only
choose states from P̄ 3

2 = {3, 4, 7, 8}.
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3. CATEGORIZING ATTRACTOR-EFFECTIVE
CANALYZING FUNCTIONS

Before proceeding with the main results in this section,
we first discuss how the mean number of attractors of an
ensemble of Boolean networks can be calculated in general.

Consider the compact matrix representation of Boolean

networks in (5). For any Colj(L) = δ
ij
2n , we write it as

a 2-tuple with both the column index and the state, i.e.,
(j, ij). L can thus be rewritten as

L := {(j, ij)} (15)

Definition 11. A chain in a Boolean network is a sequence
of different states with the following form using the 2-tuple
representation

(i1, i2) → (i2, i3) → . . . → (ik−1, ik) (16)

where ij1 �= ij2 , 1 ≤ j1, j2 ≤ k − 1.

Simple calculations show that a column (i1, i2) in L has

the capability of mapping δi12n to δi22n . The above chain can

thus transform δi12n to δik2n through k − 1 steps.

The following proposition is straightforward yet impor-
tant.

Proposition 12. A group of states can form an attractor if
and only if they can form a chain as in (16) with i1 = ik.
The length of the attractor is k.

Example 13. Consider Example 10 again. L can now be
written as

L = [(1, 3)(2, 7)(3, 7)(4, 8)(5, 1)(6, 5)(7, 5)(8, 6)]

It is readily seen that (1, 3) → (3, 7) is a chain by Definition
11 and (1, 3) → (3, 7) → (7, 5) → (5, 1) is an attractor with
length 4 by Proposition 12.

Theorem 14. (Mean number of attractors). Given an en-
semble of Boolean networks. Suppose for any j and ij ,
the probability of the state of Colj(L) being ij is known
independently as pjij (we refer to it as the “transition
probability” hereafter). The mean number of attractors
of any lengths for this ensemble, Nk, can be obtained as
follows,

Nk =
∑

i1=1,...,2n

i2 �=i1
...

ik �=i1,...,ik−1

pi1i2pi2i3 . . . pik−1ikpiki1 , ∀k ≥ 1 (17)

Proof. The theorem is straightforward by Proposition 12.

Corollary 15. (Mean number of attractors of ARBN). The
mean number of attractors of any length for the ensemble
Bn is as follows,

Nn,0
k =

2n!

2kn(2n − k)!
, ∀k ≥ 1 (18)

Proof. Notice first that for ARBN, pij ≡ 1
2n , ∀i, j. There-

fore the product pi1i2pi2i3 . . . pik−1ikpiki1 always contribute

a constant 1
2kn . The number of all these possible products

equals to all the possible choices of the following proce-
dures: 1) choose k states out of 2n possible states; and 2)
permutate these k states. It is readily to calculate that
the latter gives C2n

k k! possible choices where Cj
i is the

combination of selecting i out of j items.

The corollary is thus correct by Theorem 14.

3.1 The attractor-effective equivalence classes

Theorem 16. |En
CF| = 3, ∀n ≥ 2 and is constructed as

follows

En
CF = {En,1

CF ,E
n,2
CF ,E

n,3
CF} (19)

where | · | denotes the cardinality of a set and

En,1
CF :={CF(xu

i , f
y
j )|i = j, (u, y) = (1, 1) or (0, 0)} (20a)

En,2
CF :={CF(xu

i , f
y
j )|i = j, (u, y) = (1, 0) or (0, 1)} (20b)

En,3
CF :={CF(xu

i , f
y
j )|i �= j} (20c)

In particular,

E1
CF = {E1,1

CF,E
1,2
CF} (21)

Proof. We prove the theorem in the following three steps.

(1) Let x′ := xi � x1 � x2 . . . � xi−1 � xi+1 . . . � xn and
rewrite the compact matrix representation in (5) to
be dependent on x′. Such a process obviously does
not affect the attractors of the Boolean network as
attractors are intrinsic properties which do not rely
on specific representations. This implies that, in terms
of the capability of affecting the number of attractors,
any canalyzing function can be equivalent to a cana-
lyzing function that is canalyzing on its first variable.
Therefore, we may consider only canalyzing functions
with the form CF(xu

1 , f
y
j ). In addition, it is easy to

check that in this simplification process CF(xu
1 , f

y
1 )

represents and only represents those canalyzing func-
tions with i = j.

(2) Consider CF(xu
1 , f

y
1 ), i.e., CF(xu

i , f
y
j ) with i = j.

According to Proposition 9, we have the following in-
clusion relationships with different canalyzing types,

(1, 1)-type →V(Pn
1 ) ⊆ Pn

1 (22a)

(1, 0)-type →V(Pn
1 ) ⊆ P̄n

1 (22b)

(0, 1)-type →V(P̄n
1 ) ⊆ Pn

1 (22c)

(0, 0)-type →V(P̄n
1 ) ⊆ P̄n

1 (22d)

(a) (1, 1)-type and (0, 0)-type canalyzing functions,

that is, En,1
CF . The transition probability of these

two types of canalyzing functions are given as
follows.

p
(x1

1,f
1
1 )

ij =




1

2n−1
, i, j ∈ Pn

1

0, i ∈ Pn
1 , j ∈ P̄n

1
1

2n
, i ∈ P̄n

1

(23a)

p
(x0

1,f
0
1 )

ij =




1

2n−1
, i, j ∈ P̄n

1

0, i ∈ P̄n
1 , j ∈ Pn

1
1

2n
, i ∈ Pn

1

(23b)

It is not difficult to see that these two types
of transition probabilities can give the same Nk

in (17) as the exchange of Pn
1 and P̄n

1 does not
change the value of Nk. That is, all canalyzing
functions in En,1

CF are attractor-effective equiva-
lent.

(b) (1, 0)-type and (0, 1)-type canalyzing functions,

that is, En,2
CF . The transition probability of these

two types of canalyzing functions are given as
follows.
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p
(x1

1,f
0
1 )

ij =





0, i, j ∈ Pn
1

1

2n−1
, i ∈ Pn

1 , j ∈ P̄n
1

1

2n
, i ∈ P̄n

1

(24a)

p
(x0

1,f
1
1 )

ij =





0, i, j ∈ P̄n
1

1

2n−1
, i ∈ P̄n

1 , j ∈ Pn
1

1

2n
, i ∈ Pn

1

(24b)

Due to the same reason as above we can
confirm that all canalyzing functions in En,2

CF
are attractor-effective equivalent but are different
from En,1

CF .

(3) Consider CF(xu
1 , f

y
j �=1), that is, En,3

CF . The inclusion
relationships are as follows,

(1, 1)-type →V(Pn
1 ) ⊆ Pn

j (25a)

(1, 0)-type →V(Pn
1 ) ⊆ P̄n

j (25b)

(0, 1)-type →V(P̄n
1 ) ⊆ Pn

j (25c)

(0, 0)-type →V(P̄n
1 ) ⊆ P̄n

j (25d)

The transition probability for CF(x1
1, f

1
j �=1) can be

written as follows.

p
(x1

1,f
1
j �=1)

ij =




1

2n−1
, i ∈ Pn

1 , j ∈ Pn
j ∩ Pn

1

1

2n−1
, i ∈ Pn

1 , j ∈ Pn
j \Pn

1

1

2n
, i ∈ P̄n

1

(26)

Notice that for any j �= 1, |(Pn
j )

± ∩ (Pn
1 )

±| =

|(Pn
j )

±\(Pn
1 )

±| = 1
2n−2 where (Pn

j )
± can be either Pn

j

or P̄n
j , j = 1, . . . , n. It is then not difficult to verify

that all CF(xu
1 , f

y
j �=1) give the same Nk in (17) (more

details can be referred in the proof of Theorem 18
to be presented later), meaning that all canalyzing

functions in En,3
CF are attractor-effective equivalent.

Furthermore, (21) is true since for n = 1 we do not have

canalyzing function of the form CF(xu
1 , f

y
j �=1) and thus E1,3

CF

does not exist.

Remark 17. The numbers of all canalyzing functions in
the presence of possibly multiple canalyzing variables has
shown to be increasing exponentially with the network
size (Just et al., 2004). The set of canalyzing functions
we consider in this paper, Cn

CF, is believed to be the
most meaningful subset. It is readily to calculate that
|Cn

CF| = 4n2. Theorem 16 means that there exist only
three different attractor-effective canalyzing functions (for
n ≥ 2) out of the 4n2 possible candidates. This simplifies
significantly all analysis regarding the number of attractors
affected by canalyzing functions.

3.2 Mean number of attractors for different attractor
effective equivalence classes

Theorem 18. The mean number of attractors of the three
attractor-effective equivalence classes in En

CF are as fol-
lows.

(1) En,1
CF .

Nn,1
k = (1 +

1

2k
)Nn−1,0

k (27)

(2) En,2
CF .

Nn,2
k =

� k
2 �∑

i=0

k(k − i− 1)!i!Ck−i
i C2n−1

i C2n−1

k−i 2i−nk

(28)

(3) En,3
CF .

Nn,3
k =

� k
2 �∑

i=0

k−i∑
j=i

k−i−j∑
l=0

pi,j,l,kC
2n−2

i C2n−2

j C2n−2

l

× C2n−2

k−i−j−l2
k+j+l−nk (29)

where pi,j,l,k is defined as follows

k(j − 1)!Gk−i−j−l

j Cj
i i!G

l
j , j > 0

k! i = j = 0, l = k, 0

0 otherwise.

(30)

and Gj
i is the number of choices when allocating j

items into i groups.

Proof. We give the proof for En,1
CF and En,3

CF . E
n,2
CF can

readily follow from En,3
CF .

(1) En,1
CF . Consider Bn

CF(x1
1,f

1
1 )
. The transition probability

in (23a) implies that no attractors can include states
from both Pn

1 and P̄n
1 and therefore the attractors

contributed by i, j ∈ Pn
1 and i ∈ P̄n

1 can be calculated
independently. By Theorem 14, it is seen that the
contribution of the former is exactly equivalent to
an ARBN with size n − 1 while the latter with an
additional factor 1

2k
. (27) readily follows.

(2) En,3
CF . Consider Bn

CF(x1
1,f

1
2 )
. From (26) it is known

p
(x1

1,f
1
2 )

ij =




1

2n−1
, i ∈ Pn

1 , j ∈ Pn
2 ∩ Pn

1

1

2n−1
, i ∈ Pn

1 , j ∈ Pn
2 \Pn

1

1

2n
, i ∈ P̄n

1

(31)

Define

A =Pn
1 ∩ Pn

2 , B = Pn
1 \A,

C =Pn
2 \A,D = Ω\(A ∪B ∪ C)

where Ω := {1, 2, . . . , 2n}. The transition probabili-
ties in (31) can be reformed as

p
(x1

1,f
1
2 )

ij =





1

2n−1
, i ∈ A, j ∈ B

1

2n−1
, i ∈ B, j ∈ C

1

2n
, i ∈ C, j ∈ D

1

2n
, i ∈ D, j ∈ A

(32)

Consider Nn,3
k . Choose, in order, the following

different number of states from the four sets,

i → B, j → C, l → D, k − i− j − l → A

In total we have C2n−2

i C2n−2

j C2n−2

l C2n−2

k−i−j−l dif-

ferent choices. By (32), it is also known that each
product in (17) is the same as 1

2nk−k−j−l .
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p
(x1

1,f
0
1 )

ij =





0, i, j ∈ Pn
1

1

2n−1
, i ∈ Pn

1 , j ∈ P̄n
1

1

2n
, i ∈ P̄n

1

(24a)

p
(x0

1,f
1
1 )

ij =





0, i, j ∈ P̄n
1

1

2n−1
, i ∈ P̄n

1 , j ∈ Pn
1

1

2n
, i ∈ Pn

1

(24b)

Due to the same reason as above we can
confirm that all canalyzing functions in En,2

CF
are attractor-effective equivalent but are different
from En,1

CF .

(3) Consider CF(xu
1 , f

y
j �=1), that is, En,3

CF . The inclusion
relationships are as follows,

(1, 1)-type →V(Pn
1 ) ⊆ Pn

j (25a)

(1, 0)-type →V(Pn
1 ) ⊆ P̄n

j (25b)

(0, 1)-type →V(P̄n
1 ) ⊆ Pn

j (25c)

(0, 0)-type →V(P̄n
1 ) ⊆ P̄n

j (25d)

The transition probability for CF(x1
1, f

1
j �=1) can be

written as follows.

p
(x1

1,f
1
j �=1)

ij =




1

2n−1
, i ∈ Pn

1 , j ∈ Pn
j ∩ Pn

1

1

2n−1
, i ∈ Pn

1 , j ∈ Pn
j \Pn

1

1

2n
, i ∈ P̄n

1

(26)

Notice that for any j �= 1, |(Pn
j )

± ∩ (Pn
1 )

±| =

|(Pn
j )

±\(Pn
1 )

±| = 1
2n−2 where (Pn

j )
± can be either Pn

j

or P̄n
j , j = 1, . . . , n. It is then not difficult to verify

that all CF(xu
1 , f

y
j �=1) give the same Nk in (17) (more

details can be referred in the proof of Theorem 18
to be presented later), meaning that all canalyzing

functions in En,3
CF are attractor-effective equivalent.

Furthermore, (21) is true since for n = 1 we do not have

canalyzing function of the form CF(xu
1 , f

y
j �=1) and thus E1,3

CF

does not exist.

Remark 17. The numbers of all canalyzing functions in
the presence of possibly multiple canalyzing variables has
shown to be increasing exponentially with the network
size (Just et al., 2004). The set of canalyzing functions
we consider in this paper, Cn

CF, is believed to be the
most meaningful subset. It is readily to calculate that
|Cn

CF| = 4n2. Theorem 16 means that there exist only
three different attractor-effective canalyzing functions (for
n ≥ 2) out of the 4n2 possible candidates. This simplifies
significantly all analysis regarding the number of attractors
affected by canalyzing functions.

3.2 Mean number of attractors for different attractor
effective equivalence classes

Theorem 18. The mean number of attractors of the three
attractor-effective equivalence classes in En

CF are as fol-
lows.

(1) En,1
CF .

Nn,1
k = (1 +

1

2k
)Nn−1,0

k (27)

(2) En,2
CF .

Nn,2
k =

� k
2 �∑

i=0

k(k − i− 1)!i!Ck−i
i C2n−1

i C2n−1

k−i 2i−nk

(28)

(3) En,3
CF .

Nn,3
k =

� k
2 �∑

i=0

k−i∑
j=i

k−i−j∑
l=0

pi,j,l,kC
2n−2

i C2n−2

j C2n−2

l

× C2n−2

k−i−j−l2
k+j+l−nk (29)

where pi,j,l,k is defined as follows

k(j − 1)!Gk−i−j−l

j Cj
i i!G

l
j , j > 0

k! i = j = 0, l = k, 0

0 otherwise.

(30)

and Gj
i is the number of choices when allocating j

items into i groups.

Proof. We give the proof for En,1
CF and En,3

CF . E
n,2
CF can

readily follow from En,3
CF .

(1) En,1
CF . Consider Bn

CF(x1
1,f

1
1 )
. The transition probability

in (23a) implies that no attractors can include states
from both Pn

1 and P̄n
1 and therefore the attractors

contributed by i, j ∈ Pn
1 and i ∈ P̄n

1 can be calculated
independently. By Theorem 14, it is seen that the
contribution of the former is exactly equivalent to
an ARBN with size n − 1 while the latter with an
additional factor 1

2k
. (27) readily follows.

(2) En,3
CF . Consider Bn

CF(x1
1,f

1
2 )
. From (26) it is known

p
(x1

1,f
1
2 )

ij =




1

2n−1
, i ∈ Pn

1 , j ∈ Pn
2 ∩ Pn

1

1

2n−1
, i ∈ Pn

1 , j ∈ Pn
2 \Pn

1

1

2n
, i ∈ P̄n

1

(31)

Define

A =Pn
1 ∩ Pn

2 , B = Pn
1 \A,

C =Pn
2 \A,D = Ω\(A ∪B ∪ C)

where Ω := {1, 2, . . . , 2n}. The transition probabili-
ties in (31) can be reformed as

p
(x1

1,f
1
2 )

ij =





1

2n−1
, i ∈ A, j ∈ B

1

2n−1
, i ∈ B, j ∈ C

1

2n
, i ∈ C, j ∈ D

1

2n
, i ∈ D, j ∈ A

(32)

Consider Nn,3
k . Choose, in order, the following

different number of states from the four sets,

i → B, j → C, l → D, k − i− j − l → A

In total we have C2n−2

i C2n−2

j C2n−2

l C2n−2

k−i−j−l dif-

ferent choices. By (32), it is also known that each
product in (17) is the same as 1

2nk−k−j−l .
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Table 1. Number of attractors for various ensembles with network size 3.

Ensemble \Number \Length 1 2 3 4 5 6 7 8

Bn 1 0.875 0.6563 0.4102 0.2051 0.0769 0.0192 0.0024

En,1
CF 1.5000 0.9375 0.4219 0.0996 0 0 0 0

En,2
CF 0.5000 1.1875 0.6094 0.4746 0.2051 0.0747 0.0154 0.0011

En,3
CF 1 0.8125 0.6094 0.3496 0.1465 0.0439 0.0077 0.0005

Now consider all the possible permutations of these
k states, the total number of which is denoted by
pi,j,l,k. These permutations can be valid in only the
following two cases.
(a) j > 0. In this case we first allocate j states from C

into the k possible positions, resulting in k(j−1)!
possible choices. Note that all the states in A can
be put either before or behind the states in C,
therefore we can allocate the k − i− j − l states

from A to j groups, i.e., Gk−i−j−l
j . Although now

we have k − i − l available positions, the states
from B are not able to be put arbitrarily, i.e.,
they can not be behind A (the states from A
can never be transformed to states in B directly),
and therefore the available positions are only j.
Notice that states from B can not be transformed
to states in itself, meaning that we can only per-
mutate them but not allocate them into groups.
This will contribute a factor of Cj

i i!. At last, l
states from D can only be grouped into j groups
(they can not be behind A nor B), which is Gl

j .
(b) i = j = 0, k = k, 0. In this case there are no

states from B nor C and the states can only be
from either A or D. It is immediately clear that
all the possible choices are k!.

The above analysis gives (30).

This completes the proof.

Remark 19. From Theorem 18 we are able to calculate
the mean number of attractors for different canalyzing
functions directly, which had been impossible before. More
properties of canalyzing functions can also be possibly
examined. For example, the comparison of the mean num-
ber of attractors of Boolean networks with size 3 between
without and with the three types of different attractor-
effective canalyzing functions is shown in Table 1. It is
observed that in general Boolean networks with canalyzing
functions tend to have less attractors with shorter lengths,
which confirms previous simulation-based findings (Mur-
rugarra and Laubenbacher, 2011).

4. CONCLUSIONS

Canalyzing functions have been shown to be biologically
significant. For the first time we describe canalyzing func-
tions algebraically using a novel matrix representation
of logics based on semi-tensor product. Within this new
framework, we categorize canalyzing functions in terms of
their capabilities of affecting the number of attractors in
the Boolean network. Surprisedly we find that there exist
only three different attractor-effective canalyzing functions
for all sizes of Boolean networks larger than 1, despite the
fast increasing number of all possible canalyzing functions.
The calculation of the mean number of attractors for
Boolean networks with canalyzing functions confirms pre-
vious simulation-based findings. It is believed that further

analysis within this analytical framework will result in
meaningful findings which are impossible to obtain using
simulations.
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